Mathematical Problems in Engineering
Volume 2010 (2010), Article ID 458084, 15 pages
doi:10.1155/2010/458084
Research Article

A New Method Solving Contact/Detach Problem in Fluid and Structure Interaction Simulation with Application in Modeling of a Safety Valve

1College of Aerospace and Material Engineering, National University of Defense Technology, Changsha, Hunan 410073, China
2BP Institute for Multiphase Flow, University of Cambridge, Cambridge CB3 0EZ, UK

Received 1 August 2009; Revised 7 January 2010; Accepted 14 March 2010

Academic Editor: Mehrdad Massoudi

Copyright © 2010 Zheng Guo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A new virtual baffle methodology is implemented to solve contact/detach problem which is often encountered in fluid and structure interaction simulations while using dynamic grids technique. The algorithm is based on tetrahedral unstructured grid, and a zero thickness baffle face is generated between actually contacted two objects. In computation process, this baffle face is divided into two parts representing convective and blocked area, respectively; the area of each part is calculated according to the actual displacement between the two objects. Convective part in a baffle face is treated as inner interface between cells, and on blocked part wall boundary condition is applied; so convective and blocking effect can be achieved on a single baffle face. This methodology can simulate real detaching process starting from contact, that is, zero displacement, while it has no restriction to minimum grid cell size. The methodology is then applied in modeling of a complicated safety valve opening process, involving multidisciplinary fluid and structure interaction and dynamic grids. The results agree well with experimental data, which proves that the virtual baffle method is successful.