Academic Editor: J. Jiang
Copyright © 2010 S. G. Gocheva-Ilieva and I. P. Iliev. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
In order to model the output laser power of a copper bromide laser with wavelengths of 510.6 and 578.2 nm we have applied two regression techniques—multiple linear regression and multivariate adaptive regression splines. The models have been constructed on the basis of PCA factors for historical data. The influence of first- and second-order interactions between predictors has been taken into account. The models are easily interpreted and have good prediction power, which is established from the results of their validation. The comparison of the derived models shows that these based on multivariate adaptive regression splines have an advantage over the others. The obtained results allow for the clarification of relationships between laser generation and the observed laser input variables, for better determining their influence on laser generation, in order to improve the experimental setup and laser production technology. They can be useful for evaluation of known experiments as well as for prediction of future experiments. The developed modeling methodology is also applicable for a wide range of similar laser devices—metal vapor lasers and gas lasers.