Copyright © 2012 Yongbin Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Solving the large-scale problems with semidefinite programming (SDP) constraints is of great importance in modeling and model reduction of complex system, dynamical system, optimal control, computer vision, and machine learning. However, existing SDP solvers are of large complexities and thus unavailable to deal with large-scale problems. In this paper, we solve SDP using matrix generation, which is an extension of the classical column generation. The exponentiated gradient algorithm is also used
to solve the special structure subproblem of matrix generation. The numerical experiments show that our approach is efficient and scales very well with the problem dimension. Furthermore, the proposed algorithm is applied for a clustering problem. The experimental results on real datasets imply that the proposed approach outperforms the traditional interior-point SDP solvers in terms of efficiency and scalability.