Копылов А. П.
О Wlq-регулярности решений систем дифференциальных
уравнений в случае, когда уравнения строятся на основе разрывных функций
Получено в определенном отношении окончательное решение
проблемы регулярности с точки зрения теории пространств Соболева
решений системы (вообще говоря) нелинейных дифференциальных
уравнений с частными производными в случае, когда эта система
локально близка к эллиптическим системам линейных уравнений с
постоянными коэффициентами.
|
Kopylov A. P.
On the Wlq-regularity of solutions to
systems of differential equations in the case when the equations are
constructed from discontinuous functions
Some solution, final in a sense from the standpoint of the theory of
Sobolev spaces, is obtained to the problem of regularity of solutions
to a system of (generally) nonlinear partial differential equations
in the case when the system is locally close to elliptic systems of
linear equations with constant coefficients. The main consequences of
this result are Theorems 5 and 8. According to the first of them, the
higher derivatives of an elliptic Cl-smooth solution to a system of
lth-order nonlinear partial differential equations constructed from
Cl-smooth functions meet the local Hoelder condition with every exponent
α, 0<α<1. Theorem 8 claims that if a system of linear partial
differential equations of order l with measurable coefficients and right-hand
sides is uniformly elliptic then, under the hypothesis of a (sufficiently)
slow variation of its leading coefficients, the degree of local integrability
of lth-order partial derivatives of every Wlq,loc-solution,
q>1, to the system coincides with the degree of local integrability
of lower coefficients and right-hand sides.
|