Algebraic and Geometric Topology 4 (2004),
paper no. 10, pages 151-175.
Sur la realisation des modules instables
DongHua Jiang
Abstract. In this article, we give some conditions
on the structure of an unstable module, which are satisfied whenever
this module is the reduced cohomology of a space or a spectrum. First,
we study the structure of the sub-modules of Sigma^sH^*(B(Z/2)^{oplus
d};Z/2), i.e., the unstable modules whose nilpotent filtration has
length 1. Next, we generalise this result to unstable modules whose
nilpotent filtration has a finite length, and which verify an
additional condition. The result says that under certain hypotheses,
the reduced cohomology of a space or a spectrum does not have
arbitrary large gaps in its structure. This result is obtained by
applying Adams' theorem on the Hopf invariant and the classification
of the injective unstable modules.
This work was carried out
under the direction of L. Schwartz.
Resume. Dans cet article, on donne des restrictions sur
la structure d'un module instable, qui doivent etre verifiees pour que
celui-ci soit la cohomologie reduite d'un espace ou d'un spectre. On
commence par une etude sur la structure des sous-modules de
Sigma^sH^*(B(Z/2)^{oplus d};Z/2), i.e., les modules instables dont la
filtration nilpotente est de longueur 1. Ensuite, on generalise le
resultat aux modules instables dont la filtration nilpotente est de
longueur finie, et qui verifient une condition supplementaire. Le
resultat dit que sous certaines hypotheses, la cohomologie reduite
d'un espace ou d'un spectre ne contient pas de lacunes de longueur
arbitrairement grande. Ce resultat est obtenu par application du
celebre theoreme d'Adams sur l'invariant de Hopf et de la
classification des modules instables injectifs.
Ce travail est
effectue sous la direction de L. Schwartz.
Keywords.
Operations de Steenrod; module instable; theoreme d'Adams; la classification des modules instables injectifs
AMS subject classification.
Primary: 55N99.
Secondary: 55S10.
DOI: 10.2140/agt.2004.4.151
E-print: arXiv:math.AT/0212054
Submitted: 23 September 2002.
(Revised: 5 September 2003.)
Accepted: 27 January 2004.
Published: 24 March 2004.
Notes on file formats
DongHua Jiang
LAGA, Institut Galilee, Universite Paris Nord
93430 Villetaneuse, France
Email: donghua.jiang@polytechnique.org
AGT home page
Archival Version
These pages are not updated anymore.
They reflect the state of
.
For the current production of this journal, please refer to
http://msp.warwick.ac.uk/.