Zeitschrift für Analysis und ihre Anwendungen Vol. 18, No. 4, pp. 1031-1038 (1999) |
|
A Real Inversion Formula for the Laplace Transform in a Sobolev SpaceK. Amano, S. Saitoh and A. SyarifAll authors: Gunma Univ. Japan, Dept. Math., Fac. Eng., Kiryu, 376-8515, JapanAbstract: For the real-valued Sobolev-Hilbert space on $[0,\infty)$ comprising absolutely continuous functions $F = F(t)$ normalized by $F(0) = 0$ and equipped with the inner product $(F_1,F_2) = \int_0^\infty (F_1(t)F_2(t) + F_1'(t)F_2'(t))\,dt$ we shall establish a real inversion formula for the Laplace transform. Keywords: laplace transform, real inversion formula, Sobolev space, reproducing kernel, Mel\-lin transform, Szegö space Classification (MSC2000): 44A10, 30C40 Full text of the article:
Electronic fulltext finalized on: 7 Aug 2001. This page was last modified: 9 Nov 2001.
© 2001 Heldermann Verlag
|