Copyright © 2009 Huai-Xin Cao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We discuss the superstability of generalized module left
derivations and generalized module derivations on a Banach module. Let 𝒜
be a Banach algebra and X a Banach 𝒜-module, f:X→X and g:𝒜→𝒜. The mappings Δf,g1, Δf,g2, Δf,g3, and Δf,g4 are defined and it is proved that if ∥Δf,g1(x,y,z,w)∥ (resp., ∥Δf,g3(x,y,z,w,α,β)∥) is dominated by φ(x,y,z,w), then f is a generalized (resp., linear) module-𝒜 left derivation and g is a (resp., linear) module-X left derivation. It is also shown that if ∥Δf,g2(x,y,z,w)∥ (resp., ∥Δf,g4(x,y,z,w,α,β)∥) is dominated by φ(x,y,z,w), then f is a generalized (resp., linear) module-𝒜 derivation and g is a (resp., linear) module-X derivation.