EMIS ELibM Electronic Journals Zeitschrift für Analysis und ihre Anwendungen
Vol. 18, No. 2, pp. 449 - 467 (1999)

Previous Article

Next Article

Contents of this Issue

Other Issues


ELibM Journals

ELibM Home

EMIS Home

 

On Optimal Regularization Methods for Fractional Differentiation

U. Tautenhahn and R. Gorenflo

U. Tautenhahn: Hochschule für Technik, Wirtschaft und Sozialwesen Zittau/Görlitz (FH), FB Mathematik, P.O. Box 261, D-02763 Zittau, u.tautenhahn@htw-zittau.de
R. Gorenflo: Freie Universität Berlin, Fachbereich Mathematik und Informatik, Arnimallee 2--6, D-14195 Berlin, gorenflo@math.fu-berlin.de

Abstract: In this paper we consider the following fractional differentiation problem: given noisy data $f^\delta \in L^2(\R)$ to $f$, approximate the fractional derivative $u = D_\beta f \in L^2(\R)$ for $\beta > 0$, which is the solution of the integral equation of first kind $(A_\beta u) (x) = {1 \over \Gamma (\beta)} \int_{-\infty}^x {u(t)\, dt \over (x-t)^{1-\beta}} = f(x)$. Assuming $\|f-f^\delta\|_{L^2(\R)} \le \delta$ and $\|u\|_p \le E$ (where $\|\cdot \|_p$ denotes the usual Sobolev norm of order $p > 0$) we answer the question concerning the best possible accuracy for identifying $u$ from the noisy data $f^\delta $. Furthermore, we discuss special regularization methods which realize this best possible accuracy.

Keywords: ill-posed problems, fractional differentiation, regularization methods, optimal error bounds

Full text of the article:


Electronic fulltext finalized on: 31 Jul 2001. This page was last modified: 9 Nov 2001.

© 2001 Heldermann Verlag
© 2001 ELibM for the EMIS Electronic Edition